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Abstract

Deep learning (DL) models trained for chest x-ray (CXR)
classification can encode protected demographic attributes
and exhibit bias towards underrepresented patient popula-
tions. In this work, we propose Generative Counterfac-
tual Augmentation (GCA), a framework for mitigating al-
gorithmic bias through demographic-complete augmenta-
tion of training data. We use a StyleGAN3-based synthesis
network and SVM-guided latent space traversal to gener-
ate structured age and sex counterfactuals for each CXR
while preserving disease features. We extensively evalu-
ate GCA for training DL models with the RSNA Pneu-
monia dataset using controlled underdiagnosis bias injec-
tion across age- and sex-groups at varying rates. Our re-
sults show up to 23% reduction in FNR disparity, with a
mean reduction of 9%, across varying rates of underdiag-
nosis bias. When evaluated with the external CheXpert and
MIMIC-CXR datasets, we observe a consistent FNR reduc-
tion and improved model generalizability. We demonstrate
that GCA is an effective strategy for mitigating algorith-
mic bias in DL models for medical imaging, ensuring trust-
worthiness in clinical settings. Our code is available at
https://github.com/Wazhee/GCA

1. Introduction
Algorithmic bias is a significant barrier to the clinical adop-
tion of deep learning (DL) models for disease diagnosis and
prognosis [3, 4, 7, 8, 25, 31]. Prior work has shown that
DL models trained on chest x-rays (CXRs) can encode pro-
tected demographic attributes (such as sex, age, and race)
[6, 14, 30] and exhibit disparities in model performance be-
tween demographic groups [5, 13, 26]. This has the po-
tential to amplify existing systematic disparities in health-
care and worsen patient outcomes. As a result, training DL
models with bias mitigation strategies is critical for ensur-

ing trustworthiness in clinical settings.

Counterfactual generation has recently emerged as a
powerful technique for synthetically modifying medical
images, enabling transformations such as synthetic ag-
ing, causal inference, disease manipulation, and anatomi-
cal modifications [2, 20, 21, 23, 29]. The core idea behind
counterfactual generation is to address the ”what if” ques-
tions in medical imaging – what if this patient were female
instead of male? What if they were 80 years old instead of
40? As a model-agnostic technique, it enhances generaliz-
ability across diverse architectures and training paradigms.
Prior work has shown its effectiveness in improving robust-
ness to domain and population shifts [21, 29]. However, its
potential as a bias mitigation strategy remains largely unex-
plored.

In this work, we propose Generative Counterfactual
Augmentation (GCA), a framework for mitigating bias
to ensure demographic completeness using counterfactual
generation. Our method works by augmenting the train-
ing dataset with generated structured demographic (age and
sex) counterfactuals for each CXR, while preserving dis-
ease features. We extensively evaluate GCA through con-
trolled injection of underdiagnosis bias across varying rates,
demonstrating its effectiveness in reducing FNR disparities,
and show its generalizability to external datasets. Our main
contributions are three-fold:

1. A framework for demographic-complete augmentation
of training data which generates structured counterfac-
tuals to mitigate algorithmic bias.

2. Comprehensive evaluation of our method’s effectiveness
for bias mitigation using controlled injection of under-
diagnosis bias across age- and sex-groups.

3. Extensive validation of our method’s generalizability in
mitigating bias across multiple external datasets.
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Figure 1. An overview of the GCA framework. (A) Medical images with demographic labels. (B) Encoder maps images to latent space.
(C) StyleGAN3-based generator reconstructs images. (D) SVMs define demographic hyperplanes. (E) Counterfactuals generated via
structured traversal. (F) Decoder reconstructs demographic variations. (G) GCA-augmented dataset ensures demographic completeness.

2. Methods
2.1. Generative Counterfactual Augmentation
Fig. 1 provides a conceptual overview of the GCA frame-
work. GCA systematically generates counterfactuals for
each CXR with different demographic attributes (e.g., sex,
age) to augment the training dataset (Fig. 1A) into a demo-
graphically complete dataset (Fig. 1G). This ensures that
DL models trained on the augmented dataset learns from a
fully representative population, disentangling protected at-
tributes from disease features across demographic groups.
The GCA framework consists of four key components:

2.1.1. Image Generator
We trained an unconditional StyleGAN3 generator, G, to
synthesize high-fidelity CXR images. Training was per-
formed using the default parameters from Karras et al. [12]
on a single A100 GPU. The generator G comprises two
main components. First, a non-linear mapping network,
fθ : Z → W , parameterized by θ, that transforms a ran-
domly sampled normal 512-dimensional vector z ∈ Z into
an intermediate 512-dimensional latent vector w ∈ W .
This transformation constructs a latent space where CXR
image features are disentangled, enabling smooth latent
space traversals between demographic subgroups. Second,
the alias-free synthesis network, G, generates realistic CXR
images from the latent representations w. Unlike previous
StyleGAN variants, each layer of G is equivariant, mak-
ing it robust against aliasing and invariant to image morph-

ing transitions (e.g., interpolating between male and female
CXR images) [12]. Equivariance in neural networks is de-
fined as t ◦ f = f ◦ t where f is a nonlinear operation, such
as upsampling, and t is a spatial transformation, such as ro-
tation or translation. This property ensures that applying f
before t yields the same result as applying t before f .

2.1.2. Image Encoder
While the StyleGAN3 generator, G, can synthesize high-
quality CXR images, it lacks the ability to modify real
images directly, as it is trained adversarially alongside a
discriminator, D, using standard GAN training objectives
[11, 12]. This results in uncontrolled image generation,
limiting its applicability for counterfactual generation. To
overcome this limitation, we introduced an image encoder,
E, inspired by Abdal et al. [1], to embed CXR images
into the latent space of G. The encoder, E, takes image
i ∈ I ⊆ RH×W and pre-trained G as input, then iteratively
optimizes a corresponding latent vector w ∈ W+ using gra-
dient descent. We optimize E by minimizing a perceptual
and mean squared error (MSE) loss function:

Lpercept(i1, i2) =

4∑
j=1

∥∥∥Gϕ
j (i1)−Gϕ

j (i2)
∥∥∥2
2

(1)

LMSE(i1, i2) =
λ

N
∥i1 − i2∥22 (2)

w∗ = argmin
w

(Lpercept(G(w), i) + LMSE(G(w), i)) (3)
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Figure 2. Examples of GCA counterfactuals generated by SVM-guided latent space traversal for sex (top) and age (bottom) attributes.

where Gϕ
j (·) denotes activations of the jth VGG-16 layer

pre-trained on ImageNet [22] and E(i) = w∗ ∀i ∈ I .

2.1.3. Latent Space Traversal
To generate structured counterfactuals, we trained SVM
classifiers in the latent space of G to separate demographic
attributes, following Liang et al. [15]. Each SVM learns a
hyperplane:

w⊤
Az+ b = 0 (4)

where wA is the normal vector separating demographic
groups. To modify an attribute, we traverse perpendicular
to the hyperplane:

z′ = z+ αwA (5)

where α controls the transformation magnitude, ensuring
controlled demographic shifts while maintaining anatomi-
cal integrity.

The demographic attributes of sex and age differ funda-
mentally – sex is categorical, while age is continuous. For
sex traversal, we trained an SVM to learn a hyperplane, hsex,
separating male and female embeddings. Given a latent rep-
resentation z, we modify sex by moving along the sex axis
wsex:

z′ = z+ αwsex (6)

Unlike sex, age exists along a continuous spectrum, making
binary classification infeasible. Instead of training multi-
ple hyperplanes for different age-groups, we trained a sin-
gle hyperplane, hage, between the youngest (0–20Y) and the
oldest (80+Y) groups, enabling smooth interpolation along
the age axis wage:

z′ = z+ αwage (7)

Adjusting α allows for synthetic aging or de-aging, en-
suring realistic, progressive transformations without abrupt
transitions between age groups.

2.1.4. Dataset Augmentation
For each CXR in the training dataset, we generated five in-
termediate counterfactuals for every demographic attribute
(e.g., sex, age) using GCA (Fig. 2). This augments the
dataset by 5× to ensure smooth transitions between de-
mographic groups, resulting in a demographically complete
training dataset. In the absence of GCA, DL models trained
on imbalanced data may associate protected attributes (like
demographics) with disease characteristics, resulting in bi-
ased predictions [8, 16, 17]. Our method addresses this by
ensuring each CXR is represented across multiple demo-
graphic attributes, thereby reducing the model’s reliance on
any single attribute and mitigating bias.

2.2. Experimental Design
2.2.1. Controlled Injection of Underdiagnosis Bias
We implemented structured label perturbations to introduce
underdiagnosis bias in a targeted demographic group, al-
lowing us to control for the presence of bias in the train-
ing dataset. Given a dataset Dtrain, we define under-
diagnosis rate, r, as the rate of underdiagnosis bias char-
acterized by the proportion of positive pneumonia cases
mislabeled as ”No Findings”. Formally, the controlled
bias injection transforms the training dataset Dtrain to
biased dataset, PT

r , where r represents the underdiag-
nosis rate in subgroup T . Then, we independently tar-
geted each sex- and age-group with underdiagnosis rate,
r ∈ {0, 0.05, 0.10, 0.25, 0.50, 0.75, 1.00}. This produced
seven biased datasets per subgroup, denoted as P ∈
{P0, P0.05, . . . , Pr}, where Pr ⊆ Dtrain for each r. The
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test set remained unchanged to ensure unbiased evaluation.

2.2.2. Model Training and Evaluation
To train GCA, we used the CheXpert [9] and NIH ChestX-
ray14 [28] datasets, comprising n = 224, 316 and n =
112, 120 CXR images, respectively. To avoid data leakage,
we excluded n = 26, 684 images from the RSNA Pneu-
monia Detection Challenge dataset, a subset of the NIH
dataset. In total, n = 309, 752 images were used to train
the StyleGAN3 generator, G. All images were resized to
256× 256 for computational efficiency.

To evaluate the effectiveness of GCA for bias mitiga-
tion, we used the RSNA Pneumonia Detection Challenge
dataset, which contains n = 26, 684 frontal CXRs. Fol-
lowing prior work [13, 27], patients labeled with ”Con-
solidation,” ”Lung Opacity,” or ”Pneumonia” were catego-
rized as ”Pneumonia” in our ground truth labels while all
other disease categories were discarded and uncertain la-
bels were classified as ”No Findings.” We extracted age and
sex attributes for all patients, grouping age into five groups
(0–20, 20–40, 40–60, 60–80, and 80+ years) [26]. We then
applied GCA independently to each demographic attribute
to generate two GCA-augmented datasets: Synth-RSNA-
Sex and Synth-RSNA-Age. Additionally, we applied
GCA jointly on both attributes to produce a demographic-
complete dataset, referred to as Full-Synth-RSNA.

We trained pneumonia classifiers using ImageNet pre-
trained DenseNet121 models with 5-fold cross valida-
tion with 70/10/20 training/validation/testing splits on the
RSNA dataset (baseline model) and its GCA-augmented
versions: Synth-RSNA-Sex (for sex-group augmentation),
Synth-RSNA-Age (for age-group augmentation), and Full-
Synth-RSNA (for sex- and age-group augmentation). Each
DL model was trained for 100 epochs with batch size of
64, initial learning rate of 5e− 5, and ReduceLROnPlateau
scheduler. Model performance was monitored using binary
cross-entropy loss. All CXRs were resized to 224×224 and
random augmentations are applied during training. Finally,
the models are tested on the internal RSNA test set and the
external CheXpert (n = 377, 110) [9] and MIMIC-CXR
(n = 224, 316) [10] datasets.

2.2.3. Metrics and Statistical Analysis
To measure model performance, we use the area under the
receiver operating characteristic curve (AUROC) and false
negative rate (FNR). Here, FNR refers to the proportion
of CXRs with positive pneumonia that were misclassified
as negative. We calculate FNR by binarizing the predic-
tions using classification threshold determined by Youden’s
J statistic:

FNR = P (ŷ = 0 | y = 1) =
FN

FN + TP
(8)

where y denotes the ground truth label and ŷ denotes the
predicted label. Paired t-tests are used to compare metrics

Figure 3. Impact of controlled bias injection on FNR. Models
trained on the original (RNSA) and demographically targeted syn-
thetic (Synth-RSNA) datasets are tested on the RSNA, CheXpert,
and MIMIC-CXR test sets. The FNR for targeted demographic
groups is compared to the overall model’s FNR.

and statistical significance is defined as p < 0.05.
To quantify disparities in model performance, and thus,

the effectiveness of bias mitigation, we use the vulnerabil-
ity ν metric [13]. Briefly, ν measures the FNR disparity
between a demographic group and the overall model. It is
defined as the rate parameter β of logistic regression for the
difference in metric of a group and the overall model with
increasing rate of bias injected.

LMLE(α, β) =

n∏
i=1

f(xi)
yi(1− f(xi))

1−yi (9)

where x ≜ r ∈ Rn is the rate of underdiagnosis bias, y ∈
Rn is the FNR disparity, and α ∈ R is the intercept, such
that y ∼ f(x;α, β) denotes the logistic function:

y ∼ f(x;α, β) =
1

1 + e−α−βx
(10)

Vulnerability ν can be understood as the magnitude of FNR
disparity, where a larger ν corresponds to greater disparity
and vice versa. Moreover, a decrease in a group’s ν after
GCA indicates that the FNR disparity between the group
and overall model performance decreased with GCA.

3. Results
3.1. Impact of GCA on Model Performance
We consistently observe that GCA has no impact on AU-
ROC while significantly reducing FNR, as shown in Figs. 3
to 5. Fig. 4 shows that models trained with and with-
out GCA achieved similar AUROC scores (GCA: 0.79 ±
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Figure 4. Impact of controlled bias injection on AUROC. Models
trained on the original (RNSA) and demographically targeted syn-
thetic (Synth-RSNA) datasets are tested on the RSNA, CheXpert,
and MIMIC-CXR test sets. The AUROC for targeted demographic
groups is compared to the overall model’s AUROC.

0.04, non-GCA: 0.77 ± 0.02), indicating no performance
degradation despite training on counterfactuals. Moreover,
Fig. 3 shows models trained on the original (RSNA) and
demographically targeted synthetic (Synth-RSNA) datasets
with 100% underdiagnosis rate achieved a mean FNR of
0.48 ± 0.20 and 0.37 ± 0.15, respectively. This indicates
that even when every positive patient in the targeted group
was flipped to negative, the GCA-trained model achieved
lower FNR than the baseline model.

When evaluating models trained with sex-group aug-
mented Synth-RSNA-Sex dataset (Fig. 3), GCA signifi-
cantly lowered FNR across all underdiagnosis rates (r =
0 − 1, p < 0.01). At high underdiagnosis rates (r > 0.5),
GCA reduced FNR by 20% (p < 0.001), increasing to 32%
at r = 1 (p = 0.01). The FNR reduction was greater in fe-
males (29%) than males (16%). The FNR disparity between
males and females decreased by 18% (p < 0.005) at r >
0.5, with a 23% reduction at r = 1 (p = 0.02) Similarly,
when evaluating models trained with age-group augmented
Synth-RSNA-Age dataset (Fig. 3), GCA significantly re-
duced FNR across all underdiagnosis rates (p < 0.01), but
the overall reduction was smaller (3% for r > 0.5, 6% for
r = 1). The greatest decrease in FNR was observed in vul-
nerable groups (80+Y and 0-20Y), with FNR reductions of
26% and 24%, respectively (p < 0.05). The reduction in
FNR disparities between 80+Y and 0-20Y groups was 12%
and 13% for r >= 0.5 and r = 1, respectively.

When evaluating models trained with demographically
complete Full-Synth-RSNA dataset (Fig. 5a), GCA signif-
icantly reduced FNR across all underdiagnosis rates (p <

0.01), but the overall reduction was smaller (3% for r >
0.5, 6% for r = 1). The greatest defense against bias was
observed in vulnerable groups (80+ and 0-20 years), with
FNR reductions of 26% and 24%, respectively (p < 0.05).
Across both demographic groups, FNR increased with r for
both GCA and non-GCA models. However, GCA’s efficacy
strengthened as r increased, with greater FNR reductions
at higher underdiagnosis rates, confirming GCA’s resilience
against high amounts of bias in the training dataset (Figs. 3
and 5a).

3.2. Mitigation of Underdiagnosis Bias

Our results show that models trained with GCA have lower
FNR disparities between demographic groups, thus mitigat-
ing bias, as shown in Fig. 6. Focusing on the impact of
controlled bias injection on targeted groups (diagonals), we
observe that the difference ∆νM−F decreases when GCA
is applied (from 1.4 for original RSNA to −0.18 and 0.15
for Synth-RSNA-Sex and Full-Synth-RSNA, respectively).
Similarly, we consistently observe ν decrease for all age-
groups when models are trained with GCA. The 20-40Y
group has the greatest decrease in FNR disparity (from
ν = 3.37 for original RSNA to ν = 1.86 for both Synth-
RSNA-Age and Full-Synth-RSNA), while the 0-20Y group
has the least improvement in FNR disparity(from ν = 3.64
for original RSNA to ν = 3.63 and ν = 3.40 for Synth-
RSNA-Age and Full-Synth-RSNA, respectively).

3.3. Impact of GCA on Non-Targeted Groups

Our findings indicate that GCA does not negatively im-
pact the performance of non-targeted demographic groups,
as shown in Fig. 6. We observe similar vulnerability ν
values for non-targeted groups, across the original RSNA,
Synth-RSNA, and Full-Synth-RSNA datasets. Moreover,
non-targeted groups that were adversely affected when a
different group was targeted in the original RSNA dataset
achieve lower ν when GCA is applied. For example, the
0-20Y is affected when 20-40Y group is targeted in origi-
nal RSNA. When GCA is applied, ν for 0-20Y decreases
considerably, from ν = 2.96 to ν = 0.68 (∆ = −2.28) for
both Synth-RSNA-Age and Full-Synth-RSNA.

3.4. Generalizability to External Datasets

We observe that the impact of GCA on bias mitiga-
tion remained consistent across the external CheXpert and
MIMIC-CXR datasets, as shown in Figs. 3 and 5. Not only
did AUROC remain similar (or even slightly improve) in
GCA-trained models (Figs. 4 and 5b), but reductions in
FNR disparities and vulnerability ν translated to both ex-
ternal datasets, as shown in Figs. 7 and 8. These findings
highlight GCA’s strong generalizability to external data.
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(a) FNR (b) AUROC

Figure 5. Impact of controlled bias injection for models trained on the original (RSNA), demographically targeted synthetic (Synth-RSNA),
and demographically complete synthetic (Full-Synth-RSNA) datasets. Model performance across (a) FNR and (b) AUROC metrics for
targeted demographic groups is compared to the overall model performance.

Figure 6. Vulnerability ν of the targeted and non-targeted demo-
graphic groups for models trained on the original (RSNA, column
1), demographically targeted synthetic (Synth-RSNA, column 2),
and demographically complete synthetic (Full-Synth-RSNA, col-
umn 3) datasets and tested on RSNA test set.

4. Discussion

Our results demonstrate that GCA is an effective strat-
egy for mitigating bias in DL models for medical imag-
ing. By synthesizing structured demographic counter-
factuals, GCA augments the training dataset to achieve
demographic-completeness, thereby increasing sample size
by 5× for Synth-RSNA and 10× for Full-Synth-RSNA, re-
spectively. This augmentation disentangles protected at-
tributes (sex and age) from disease-related characteristics,
enabling models trained with GCA to consistently yield
lower mean FNRs across age- and sex-groups, even un-
der varying rates of underdiagnosis bias. On average, our
method reduced FNR disparities by 9% without introduc-
ing artifacts, indicating improved fairness and robustness.
Furthermore, we showed that GCA generalizes well to ex-
ternal datasets, consistently achieving higher AUROC and

Figure 7. Vulnerability ν of the targeted and non-targeted demo-
graphic groups for models trained on the original (RSNA, column
1), demographically targeted synthetic (Synth-RSNA, column 2),
and demographically complete synthetic (Full-Synth-RSNA, col-
umn 3) datasets and tested on CheXpert test set.

lower FNR on the CheXpert and MIMIC-CXR datasets.
Notably, GCA does not negatively impact the perfor-

mance of non-targeted demographic groups, despite gen-
erating counterfactuals across age and sex attributes. This
is because GCA generates label-consistent counterfactuals
(e.g., a male CXR augmented to appear female remains la-
beled as male), forcing the model to learn demographic-
invariant features. These counterfactuals do not inject noise
into the label space, but instead act as a regularizer, encour-
aging classifiers to focus on pathology-relevant features. As
a result, GCA improves robustness on targeted groups with-
out adversely affecting accuracy on non-targeted groups.

Since GCA requires generating a large volume of coun-
terfactual images – specifically 5 × N × M , where N is
the number of augmentations and M is the dataset size, the
computational efficiency of the generator G is a crucial con-
sideration. We chose StyleGAN3 [11, 12] as our image syn-
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Figure 8. Vulnerability ν of the targeted and non-targeted demo-
graphic groups for models trained on the original (RSNA, column
1), demographically targeted synthetic (Synth-RSNA, column 2),
and demographically complete synthetic (Full-Synth-RSNA, col-
umn 3) datasets and tested on MIMIC-CXR test set.

thesis network due to its favorable balance of image qual-
ity, semantic controllability, and low computational over-
head. Unlike Hierarchical VAEs (HVAEs), such as Deep
Structural Causal Models [18, 20, 21], which often pro-
duce blurry or low-resolution outputs, or diffusion models
[19, 24], which are computationally expensive and require
hundreds of sampling steps per image, StyleGAN3 enables
scalable CXR image synthesis with a low one-time training
cost with disentangled latent spaces. This allows for con-
trolled demographic traversal for label-consistent counter-
factual generation (e.g., changing age or sex while preserv-
ing pathology), which is a core aspect of GCA’s strategy.

Our work has certain limitations. First, we primarily fo-
cus on pneumonia classification using CXRs, and further
validation is needed to assess GCA’s generalizability across
other pathologies and imaging modalities (e.g., CT, MRI).
Second, the RSNA dataset only includes age and sex demo-
graphic variables, limiting our ability to explore the impact
on other protected characteristics like race, scanner, and im-
age acquisition site. For future work, we will aim to ex-
tend GCA for broader clinical tasks and incorporate multi-
attribute counterfactual generation.

In conclusion, GCA offers a scalable and effective
framework for mitigating algorithmic bias in DL models
through structured counterfactual generation. Our findings
suggest that GCA not only improves model fairness and ro-
bustness but also has the potential to be adapted for other
imaging modalities and tasks, ensuring trustworthiness in
clinical settings.
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